Positron emission tomography (PET) is a radiotracer imaging method that yields quantitative images of regional in vivo biology and biochemistry. PET, now used in conjunction with computed tomography (CT) in PET/CT devices, has had its greatest impact to date on cancer and is now an important part of oncologic clinical practice and translational cancer research. In this review of current applications and future directions for PET/CT in cancer, the authors first highlight the basic principles of PET followed by a discussion of the biochemistry and current clinical applications of the most commonly used PET imaging agent, 18F-fluorodeoxyglucose (FDG). Then, emerging methods for PET imaging of other biologic processes relevant to cancer are reviewed, including cellular proliferation, tumor hypoxia, apoptosis, amino acid and cell membrane metabolism, and imaging of tumor receptors and other tumor-specific gene products. The focus of the review is on methods in current clinical practice as well as those that have been translated to patients and are currently in clinical trials. Cancer 2014. © 2014 American Cancer Society.
Original Article: http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1002/cncr.28860
Júlio Pereira
www.weneuro.com
www.linkedin.com/in/juliommais
lattes.cnpq.br/7687651239699170
Consultório (11)3141-9550/3141-9553