Neurosurgical Focus, Volume 34, Issue 2, Page E9, February 2013.
Object The authors' goal was to review the current understanding of the underlying molecular and genetic mechanisms involved in low-grade glioma development and how these mechanisms can be targets for detection and treatment of the disease and its recurrence. Methods On October 4, 2012, the authors convened a meeting of researchers and clinicians across a variety of pertinent medical specialties to review the state of current knowledge on molecular genetic mechanisms of low-grade gliomas and to identify areas for further research and drug development. Results The meeting consisted of 3 scientific sessions ranging from neuropathology of IDH1 mutations; CIC, ATRX, and FUBP1 mutations in oligodendrogliomas and astrocytomas; and IDH1 mutations as therapeutic targets. Sessions consisted of a total of 10 talks by international leaders in low-grade glioma research, mutant IDH1 biology and its application in glioma research, and treatment. Conclusions The recent discovery of recurrent gene mutations in low-grade glioma has increased the understanding of the molecular mechanisms involved in a host of biological activities related to low-grade gliomas. Understanding the role these genetic alterations play in brain cancer initiation and progression will help lead to the development of novel treatment modalities than can be personalized to each patient, thereby helping transform this now often-fatal malignancy into a chronic or even curable disease.
Object The authors' goal was to review the current understanding of the underlying molecular and genetic mechanisms involved in low-grade glioma development and how these mechanisms can be targets for detection and treatment of the disease and its recurrence. Methods On October 4, 2012, the authors convened a meeting of researchers and clinicians across a variety of pertinent medical specialties to review the state of current knowledge on molecular genetic mechanisms of low-grade gliomas and to identify areas for further research and drug development. Results The meeting consisted of 3 scientific sessions ranging from neuropathology of IDH1 mutations; CIC, ATRX, and FUBP1 mutations in oligodendrogliomas and astrocytomas; and IDH1 mutations as therapeutic targets. Sessions consisted of a total of 10 talks by international leaders in low-grade glioma research, mutant IDH1 biology and its application in glioma research, and treatment. Conclusions The recent discovery of recurrent gene mutations in low-grade glioma has increased the understanding of the molecular mechanisms involved in a host of biological activities related to low-grade gliomas. Understanding the role these genetic alterations play in brain cancer initiation and progression will help lead to the development of novel treatment modalities than can be personalized to each patient, thereby helping transform this now often-fatal malignancy into a chronic or even curable disease.
Sent with MobileRSS HD FREE
Júlio Leonardo B. Pereira
Phone: (+1) 424-2301706
Linkedin:http://www.linkedin.com/in/juliommais
Site: www.neurocirurgiabr.com
No comments:
Post a Comment